On the size of solutions of the inequality
¢(ax + b) < p(ax)
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Abstract. An estimate is given of the size of a solution n € N of the inequality ¢(an+b) <

¢(an), gcd(a,b) = 1. Experiments indicate that this gives a useful indication of the size
of the minimal solution.
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1. Introduction

Let ¢(m) be the Euler totient function. Recently, D.J. Newman [5] has shown that
for any nonnegative integers a, b, ¢, and d with ad # bc, there exist infinitely many
positive integers n for which

dlan +b) < p(cn + d). (1)

For the case a = ¢ = 30, b = 1, d = 0, Newman stated that there are no solutions
n with n < 20 000000 and that a solution may be beyond the reach of any possible
computers. Two years later, Greg Martin [3] found the smallest solution for this
case, which turned out to be a number as large as 1116 decimal digits.

In this paper, we will analyse Newman and Martin’s approach to this problem
which enables us, for the case a = ¢, ged(a,b) =1, d =0, to give an estimate of
the size of an n satisfying (1). Experiments indicate that this estimate also gives
a useful indication of where the minimal solution of (1) can be expected.

Notation. By p, we mean the k-th prime and by Py the product pips - - - ps-
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2. A solution of ¢(30n 4 1) < ¢(30n)

We first consider the special case a = ¢ =30,b =1, d = 0. As Martin showed, if
n satisfies ¢(30n + 1) < ¢(30n), then
d(30n+1)  ¢(30n)  $(30)n 4
= — = 0.26666...

Jn+1 30n+l 30m 15 ’ (2)
(using ¢(ab) < ¢la)b Va,b € N). Since ¢ is multiplicative and since o) /p° =
¢(p)/p for any prime p and any e > 2, the smallest m for which ¢(m) /m has
a given value, is squarefree. Therefore, we look for solutions of the inequality
o(30n + 1) < ¢(30n) among the numbers

k
my = Hpi, k=4,5,...,
i=4

which satisfy

. 4
myi =1 mod30 and %nk}”—) < T (3)

Such my exist with high probability because the numbers

k

¢(mx) =[[C-pY). k=45, ..

mpr
k i=4

.....

decrease monotonically to zero, and because the residues my mod 30, k = 4, 5,
seem to be uniformly distributed. For example, in the first 800 terms, the ¢(30) = &
possible values

1,7,11,13,17,19,23,29
occur with frequencies

100,99, 107,104, 110, 100, 85, 95,

respectively.
With help of the GP/Pari package [1], we have found that
4
magg = 1 mod 30 and M = 0.26631... < —, (4)
mM388 15

and that there is no my with 4 < k < 388 which satisfies these conditions. Now
we check whether the number nggs := (magg — 1) /30 actually is a solution of
the inequality ¢(30n + 1) < ¢(30n). It turns out that nsss = 23n' where n' =
5.502175051... x 10"** has no prime divisors < psggeo = 611953. Using the well-
known result that if n’ has no prime divisors < B then

1— —
B

’

qﬁ(n’) 1\ logn’/log B
> (- 3)
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we find
#(30n38s) _ $(240n') 4 ¢(n')
30mn388 240n/ 15 n’
S 4 ( 1 logn’/ log 611953
=(1- 6—11—95§) — 0.26658....
Since
30nsgs —1128
o = L 7T X 1071,
we conclude that
#(30n338)
" > (.2 .
30n388 + 1 6657

Combining this with (4) we have

#(30n3ss +1) $(30m;s8)
0 1 0.26631... < 0.26657 < 0mams + 1
which implies that ¢(30n3gs + 1) < #(30n3ss).

So n3gs = 4.401740040... x 10125 is a solution of the inequality ¢(30n + 1) <
¢(30n), but it is not the smallest one. Martin [3] found this by computing the
minimum number of distinct prime factors of such an n, viz., 382, by explicitly
giving a solution with 382 distinct prime factors, and by showing that there are
no smaller ones. Martin’s minimum solution is given by

383
n=(z—1)/30, where z= <Hpi>p385p3ss,

i=4

and

n = 2.329098101... x 101115,

3. An estimate of the size of a solution of
$(an + b) < ¢(an), ged(a,b) = 1

In this section we will mimic and analyse the step described in Section 2 to find an
myi = 1 mod 30 for which ¢(ms)/my < ¢(30)/30, for the more general case a = ¢,
ged(a,b) =1, d = 0 in (1). So we consider the inequality

¢(an+0b) < ¢(an), ged(a,b) =1, (5)

and look for a number my = b moda for which ¢(my)/mi < ¢(a)/a. We expect
this my to be a solution of (5) and, also, that its size is not too far from the size
of the smallest solution of (5) as we have seen in Section 2 for the case a = 30,
b=1.
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As in Section 2, consider the products of the small primes which are not in a:

by
= for k=1,2,..., 6)
T ed(Pra) (
which satisfy
mg =bmoda and dme) < __¢(a) . (7)
my a

Write my, = any, +b. We derive an estimate of the expected size of the smallest
my. satisfying (7) as follows. This mj must satisfy

¢lany, +b) = ¢(ank). (8)
We assume that b < any so that any + b = any. Dividing gives

plank +b)  ¢lany)
ang +b any

(9)

For the left hand side of (9) we have, using (6) V)

plang +b)  d(mg)  a ¢(FBy) a 1
any +b my d(a) Py ¢(a) H (1 )

For the right hand side of (9) we assume that
$lany)  ola)

ang a

This requires that the prime divisors of n; which are not in a are not too small.

Substitution in (9) gives
[1(-3)= (49"
PP p 4
With Mertens’s Theorem [2, §22.8]:
-

H(1—1> © as T — oo
o<s D log = ’

where v is Euler’s constant ( = 0.5772...), it follows that

2
logpr = e™7 <5(%)—) . (10)

We estimate the corresponding size of ny as follows. We have

Py

ny+b=mp = ——
WO = (P

1) with k such that py > the largest prime in a.
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so that

logny = log P, —loga — log(ged( Py, a)).
By the Prime Number Theorem [2, Chapter 22],

log Py = ) logp=0(p) ~pr, s px — oo,
P<pi
where 6(-) is Chebyshev’s function. So we could simplify our estimate of log nj by

replacing log Py by pg, but this introduces an undesirable error. Summarizing, we
have the following

Estimate. An estimate of the size of a solution of the inequality
olan +b) < ¢(an), with ged(a,b) =1,

is given by logn ~ log P, — log a — log(ged (P, a)), where k is such that logpy ~
e(a/p(a))%.

For a = 30, b = 1 this gives: p;, ~ 2685, logn ~ 2600, log;,n =~ 1129 while in
Section 2 we found k = 388, psgg = 2677 and log;,n3ss = 1125.643....

Remark. Greg Martin [4] pointed out that when a is the product of several
primes, a/¢(a) has order of magnitude logloga and if such an a has D digits, then
it follows from the analysis given above that the smallest solution to ¢(an +b) <
#(an) will have about exp(c(log D)?) digits, for some constant ¢. In particular,
there is in general no polynomial-time algorithm for finding the least solution to
this inequality, for the simple reason that just writing down the answer takes longer
than any polynomial function of D!

4. A program for finding a solution of
(an + b) < ¢(an), ged(a, b) = 1

We have written a GP/Pari program? which finds a solution of (5), for given
a and b, in the same way as we found the solution of ¢(30n + 1) < ¢(30n) in
Section 2. This program has two steps:

Step 1. Find the smallest k € N for which my, as defined in (6) satisfies (7).

Step 2. For this my define ny := (my — b)/a. Find a lower bound for the
quotient ¢(any)/(any) by dividing out all the prime factors of ny up to some fixed
bound B. Let

i
ng ==n'n"n",

2) This program is available from the author upon request.
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where .
— n’ consists of the prime factors of ny which are in a,
— ' consists of the (known) prime factors of nj which are not in a, and which
are not greater than B, and '
- n" consists of the (unknown) prime factors of ny, which are greater than B.
Then
olany) _ o(a) (n”) o(n”) _ ¢la) g(n") ¢, 1 \lesn" o8B
> m 1- —E =R

Now check whether ¢(my)/my, as computed in Step 1, satisfies

any a n' " a n

$lrm) _ p_amk
Mk ang +b '

If so, it follows that

#(any + b) < B(ank)
mg my

so that ny is a solution of (5). If not, continue with Step 1 to find the next smallest
solution of (7). a

We have run this program for b =1 and a = 6, 30, 42 with B = p15000 = 163841
and for b = 1, a = 210 with B = p1gogo0 = 1299709, and compared the values
of pr and log,y n, as estimated using Section 3, with the values of p, and log,;yn
computed with this program. The results are given in Table 1.

estimated computed
a(b=1) Pk loggn k Pk log)p 7 k
6=2-3 157 57.796... 36 151 57.796... 35
30=2-3-5 2685  1129.072...| 388 2677  1125.643... | 385
42=2.3-7 971 397.081... | 171 1019 421.063... | 161
210=2-3-5-7 | 46476 20048.160... | 4981 48413 20880.507... | 4789

Table 1. Comparison of estimated (according to Section 3) and computed values of py
and log,y n, where the computed value of n = (my — b)/a, with my = P/ ged(Py,a),
satisfies ¢(an +b) < ¢(an), ged(a,d) = 1. The last column lists the minimal value & of k
for which ¢(my)/my. < 4(a)/a.

The main reason for the difference between the estimated and computed values
of p and log)yn is that the condition my = 1 moda is only satisfied in about 1
in every ¢(a) cases (on the assumption of the uniform distribution of the residues
my moda).

The last column of Table 1 lists the minimal value k of k for which ¢(my)/me <
¢(a)/a, where my = Py,/ ged(Py, a). Since this inequality is a necessary condition
for any solution, we can use our computed solution and this k to find the minimal
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solution. For example, for a =6, b = 1, we have k = 35, so

™M =p3pg---p3s =5-T---149

is the smallest product of consecutive primes > 5 which satisfies the inequality

¢(m)/m < 1/3. In addition, for this m we have m = 1 mod6, ¢(m) = 8.2531... x
10% and

d(m —1) = ¢(2-3- 1381 - 70140112179047 - p39) = 8.2838... x 10°°,

where p39 is a prime of 39 decimal digits, easily computable from m — 1 and the
other given factors of m — 1. So this m is also the minimal solution = 1 mod 6 of
the inequality ¢(m) < ¢(m — 1).

Table 1 lists sizes of estimated and computed solutions for various values of a,
with b= 1. In fact, our program finds solutions for all those values of b for which
ged(a,b) =1, and since we have no indications that the residues my mod a are not
uniformly distributed, we expect the solutions for b # 1 to have about the same
size as those given for b = 1 in Table 1.
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